ПРОГРАММА ДЛЯ ЭВМ «Программный комплекс «НеваЭко» для системы мониторинга состава атмосферного воздуха»

Руководство пользователя

Листов: 23

Санкт-Петербург 2021 г.

Оглавление

1.	Обц	цая информация	2
2.	Апп	аратные требования	2
3.	Уста	ановка и запуск	3
4.	Раб	ота с программой	3
	4.2.	Мониторинг	4
	4.3.	Ручной ввод	6
	4.4.	Единицы измерения	8
	4.5.	Измеряемые вещества и физические величины	8
	4.5.	1. Предельно допустимые значения	9
	4.6.	Регионы	10
	4.7.	Точки измерения	11
	4.8.	Измерительные приборы	12
	4.8.	1. Добавление библиотеки прибора	13
	4.8.2.	Настройка прибора	13
	4.8.3.	Настройка соединения	14
	4.8.4.	Настройка каналов	14
	4.8.5.	Настройка интервалов усреднения	14
	4.8.6.	Настройка оповещений	15
	4.9.	Системные приборы	17
	4.10.	Журнал	17
	4.11.	Отчет	18
	4.12.	Уведомления	19
	4.13.	Пользователи	19
	4.14.	О программе	20
5.	Под	ключаемые библиотеки приборов	21
	5.1.	Horiba AP серия	21
	5.2.	Davis	22
	5.3.	GlobalSat	22

1. Общая информация

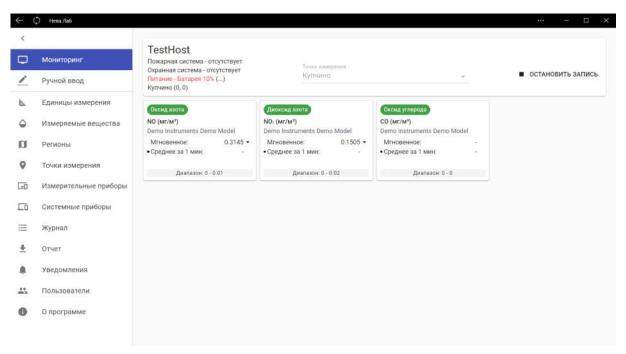
Программное обеспечение «Программный комплекс «НеваЭко» для системы мониторинга состава атмосферного воздуха» (далее ПО) предназначено для сбора данных о составе атмосферного воздуха, анализе полученных данных, передачи данных на центральный пункт обработки, оповещении пользователей при обнаружении отклонений измеряемых параметров.

ПО может использоваться как на стационарных, так и на мобильных экологических постах, оборудованных газоаналитическим и метеорологическим оборудованием. На стационарных постах ПО может работать в непрерывном режиме, на мобильных постах - в режиме по требованию, оператор самостоятельно запускает ПО вручную.

ПО имеет возможность работать в одном из трех режимов работы: изолированный режим, режим клиента и режим выделенного сервера.

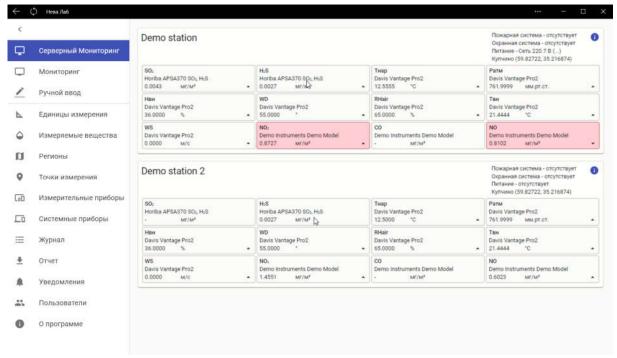
Если ПО работает в режиме с выделенным сервером, то необходимо обеспечить наличие каналов связи для обеспечения коммуникации между сервером и клиентами. В качестве линий связи может использоваться выделенный проводной канал для доступа в Интернет или беспроводная сеть мобильного оператора (минимальный стандарт 3G). Во всех режимах работы ПО имеет возможность выгрузки отчетов в формате PDF, XLSX, CSV для последующей их отправки по электронной почте или для выгрузки на внешний носитель.

2. Аппаратные требования


- Процессор Intel серии Pentium G и выше либо AMD K10.5 и выше.
- Оперативная память 8 Гб и больше.
- Жесткий диск минимальным объемом 500 Гб. Размер жесткого диска зависит от количества измеряемых и хранимых параметров, а также от требующего срока хранения информации. Подбирается индивидуально для каждой системы. Серверная часть должна иметь больший объем диска, чем клиентская.
- Операционная система Windows 10 x64 и выше либо Debian 10, либо Ubuntu 20.
- Один из браузеров Google Chrome, Mozilla Firefox, Microsoft Edge, Opera.

3. Установка и запуск

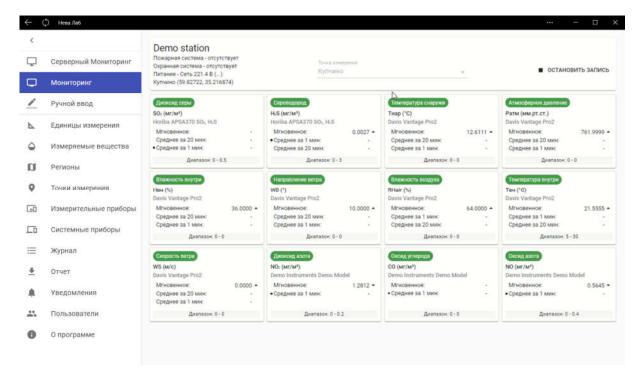
Для установки приложения воспользуйтесь руководством администратора.


4. Работа с программой

Интерфейс состоит из вкладок, расположенных в левой части и рабочей области, расположенной справа. Для экономии пространства экрана, панель вкладок имеет функцию сворачивания. Для сворачивания панели нажмите на стрелку в верхней части.

4.1. Серверный мониторинг

Вкладка «Серверный мониторинг» отображается при работе ПО в режиме сервера.

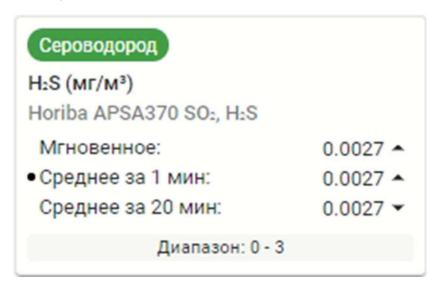


Вкладка отображает информацию о всех подключенных к серверу экологических станциях в виде блоков. Каждый блок содержит текущие значения измеряемых каналов, информацию от вспомогательных систем станций таких как: противопожарная система, охранная система и система бесперебойного питания, а также текущие координаты станции.

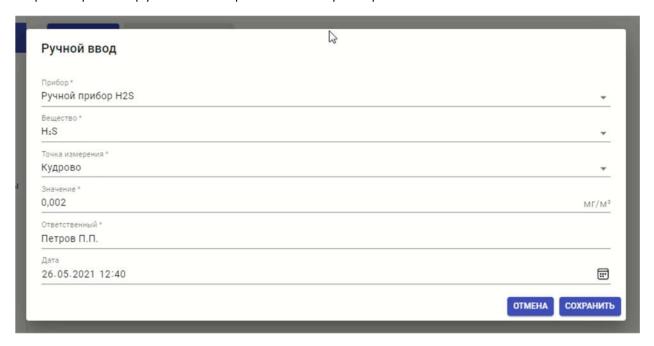
Каждый блок имеет значок с восклицательным знаком в правом верхнем углу, при нажатии на который открывается вкладка «Мониторинг», которая содержит подробную информацию об измерениях станции.

4.2. Мониторинг

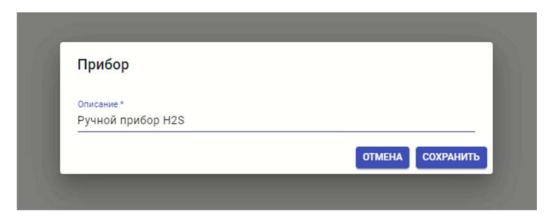
На вкладке «Мониторинг» отображаются измеряемые с приборов параметры и информация от вспомогательных систем станции.



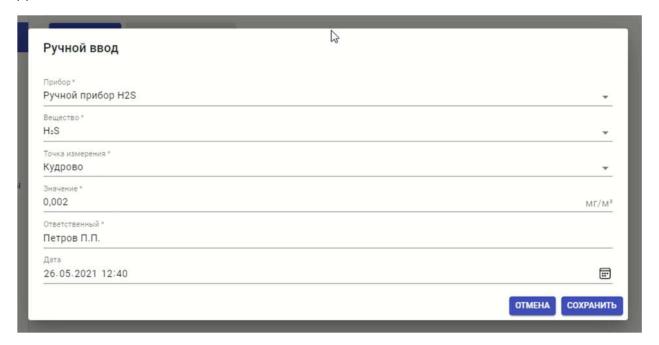
В верхней части вкладки отображается шапка, которая содержит название станции, информацию о состоянии противопожарной и охранной систем, о состоянии системы бесперебойного питания и текущих координатах станции. В случае отсутствия какой-либо из систем напротив её названия отображается надпись «отсутствует». Для отображения дополнительной информации о работе системы, наведите курсор на (...) напротив нужной системы, отобразится всплывающее окно. В центре шапки расположена выбранная точка измерения, в которую в текущий момент производится запись анализируемых данных. В правой части расположена кнопка, которая позволяет запускать и останавливать запись данных.


Каждый измеряемый канал устройства отображается в виде плитки. Каждая плитка содержит полное и сокращенное названия измеряемого параметра, единицу измерения, название прибора, информацию о предельно-допустимых значениях, мгновенные значения, получаемые с прибора и усредненные значения за настроенные пользователем интервалы времени. Если прибор находится в состоянии технического обслуживания, то на плитке отображается значок в виде гаечного ключа. Если с измерительным каналом возникают проблемы, то плитка окрашивается в оранжевый цвет. При выходе значения за допустимые пределы плитка окрашивается в красный цвет. Точка слева от выбранного типа значений

указывает на тип, который используется для оценки диапазона допустимых значений. Например, выбран тип «Среднее за 1 мин», данные этого типа будут обновляться раз в минуту и при выходе значений за допустимый диапазон плитка будет окрашиваться в красный цвет, в то же время выход за допустимый диапазон значений «Мгновенное» и «Среднее за 20 мин» не будет влиять на отображение плитки.

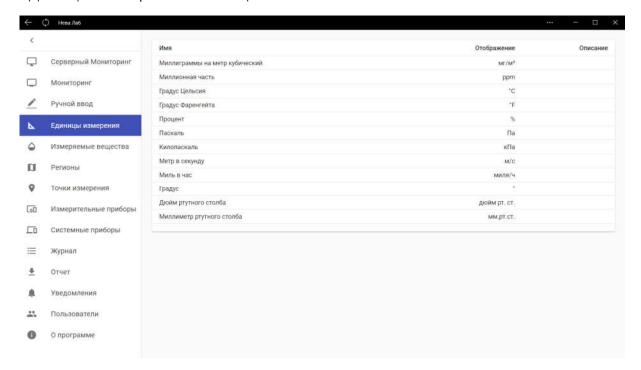


4.3. Ручной ввод


Вкладка «Ручной ввод» предназначена для ввода измеренных параметров от ручных измерительных приборов.

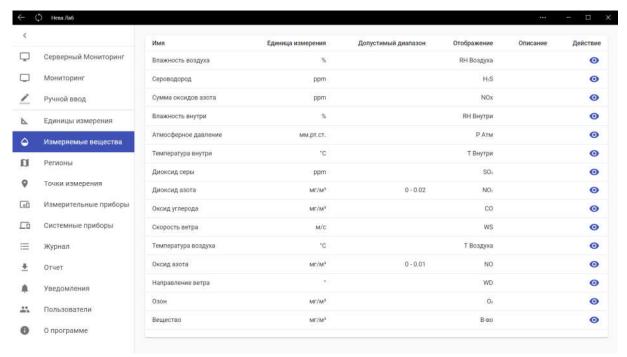
Для добавления ручного измерительного прибора нажмите кнопку «Добавить прибор», в появившемся окне введите название прибора и нажмите кнопку «Сохранить».

После добавления прибора появляется возможность внесения значений, измеренных вручную. Для этого нажмите кнопку «Добавить», в поле «Прибор» выберите из списка нужный прибор, в поле «Вещество» выберите измеряемое вещество, в поле «Точка измерения» выберите точку, в которой было проведено измерение. В поле «Значение» введите измеренное значение. Обратите внимание на единицу измерения, в которой было произведено измерение, она должна соответствовать единице, которая отображается справа в поле ввода значения. В поле «Ответственный» введите фамилию и инициалы сотрудника ответственного за проведение анализа образца. В поле «Дата» введите дату проведения анализа и нажмите кнопку «Сохранить». Результат будет записан в базу данных ПО.

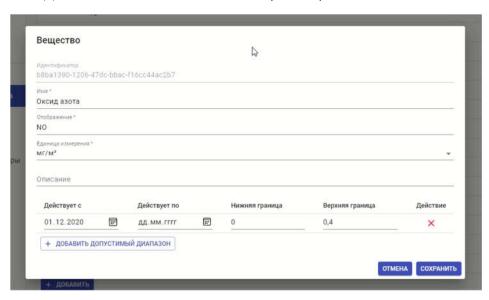


Для просмотра введенных вручную результатов на вкладке «Ручной ввод» в поле «Прибор» выберите нужный прибор, в поле «Вещество» выберите нужные вещества, в полях «Дата от» и «Дата до» выберите нужный

диапазон дат и нажмите кнопку «Применить». Так же введенные с ручных приборов данные будут выводиться в отчеты.

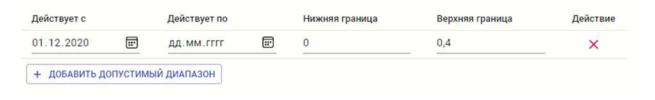

4.4. Единицы измерения

На вкладке «Единицы измерения» отображается информация об единицах измерения имеющихся в системе.

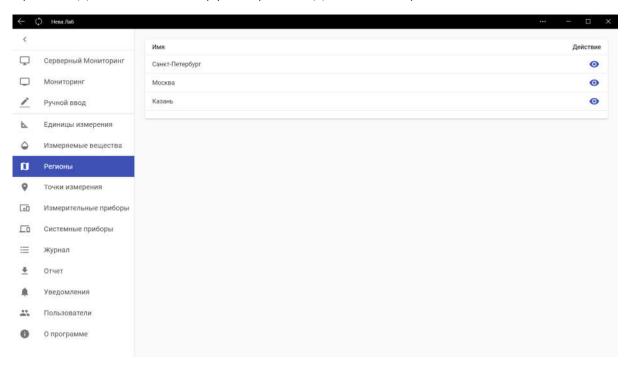


4.5. Измеряемые вещества и физические величины

На вкладке «Измеряемые вещества» отображаются вещества и физические величины, получаемые с приборов.



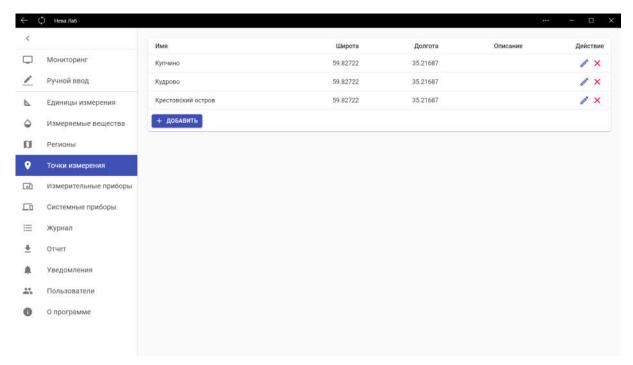
Для добавления нового измеряемого вещества или физической величины нажмите кнопку «Добавить» внизу списка и в появившемся окне в поле «Имя» введите полное название вещества или величины (например, «Оксид азота»), в поле «Отображение» введите сокращенное название (например, «NO»), из выпадающего списка «Единица измерения» выберите единицу измерения, которая будет соответствовать добавляемому веществу или величине. Выбранная единица измерения будет использоваться для хранения результатов и вывода информации в отчеты. В поле «Описание» при необходимости введите комментарий, добавьте необходимые допустимые диапазоны и нажмите кнопку «Сохранить».

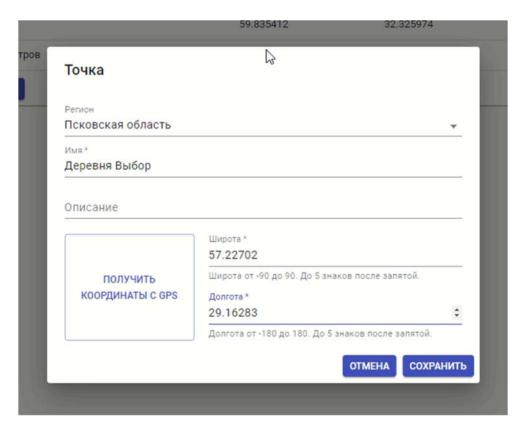

4.5.1. Предельно допустимые значения

Для контроля допустимых значений измеряемых веществ и физических величин необходимо добавить диапазоны. В окне добавления нового вещества или величины нажмите кнопку «Добавить диапазон». Ниже появится строка с новым диапазоном. В полях «Действует с» и «Действует по» укажите временной период, в который, согласно регламентирующим документам, действует данный диапазон значений. Например, для загрязняющего атмосферный воздух вещества в разный период времени могут быть установлены разные нормы максимально допустимой концентрации. Для каждого периода необходимо создать свой диапазон дат и ввести соответствующие значение в поля «Нижняя граница» и «Верхняя граница». Эта информация необходима для формирования отчетов за разный период времени.

4.6. Регионы

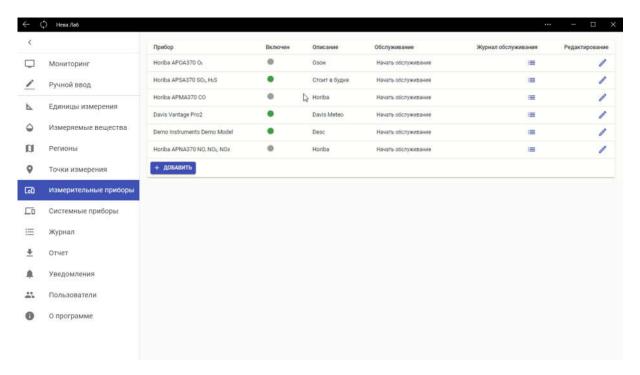
Передвижные экологические станции могут производить анализ воздуха в различных регионах. На вкладке «Регионы» отображается информация о зарегистрированных в системе регионах, в которых производятся или планируют производиться измерения.


Для добавления нового региона нажмите кнопку «Добавить». В появившемся окне введите название региона и нажмите кнопку «Сохранить».


Для редактирования региона во кладке «Регионы» в колонке «Редактировать» нажмите на иконку с изображением карандаша, в появившемся окне произведите необходимые исправления и нажмите кнопку «Сохранить».

4.7. Точки измерения

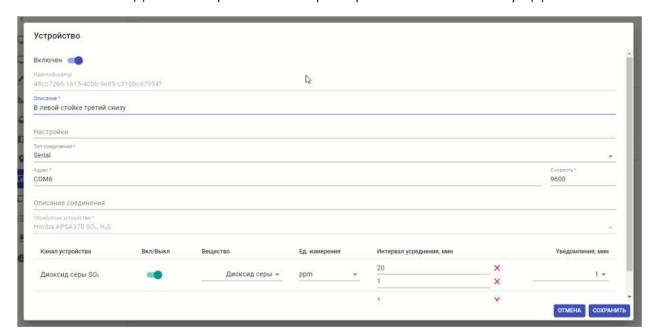
На вкладке «Точки измерения» отображаются точки, в которых производятся или планируют производиться измерения. Точка представляет собой участок местности с географическими координатами, названием и комментарием. Перед началом записи измерений оператор выбирает одну из точек, добавление и редактирование которой производится в этой вкладке


Для добавления точки измерений нажмите кнопку «Добавить». В появившемся окне в поле «Регион» выберите регион, которому принадлежит точка, введите имя точки и, при необходимости, комментарий. Если экологическая станция оснащена GPS приемником, то нажмите кнопку «Получить координаты GPS» и поля «Широта» и «Долгота» будут заполнены текущими координатами. Координаты в системе представлены в формате градусов. Широта записывается дробным числом в диапазоне от -90 до 90 с точностью до 5 знаков после запятой. Долгота записывается дробным числом в диапазоне от -180 до 180 с точностью до 5 знаков после запятой. В случае отсутствия GPS приемника необходимо вручную вписать координаты и нажать кнопку «Сохранить».

Для редактирования точки измерения во кладке «Точки измерения» в колонке «Редактировать» нажмите на иконку с изображением карандаша, в появившемся окне произведите необходимые исправления и нажмите кнопку «Сохранить».

4.8. Измерительные приборы

Во вкладке «Измерительные приборы» отображаются зарегистрированные в системе приборы. Вкладка позволяет добавлять новые приборы и изменять конфигурацию существующих.



4.8.1. Добавление библиотеки прибора

Для добавления измерительного прибора в систему необходима соответствующая прибору библиотека. Библиотека представляет собой файл с расширением dll. Файл необходимо положить в каталог с библиотеками измерительных приборов, который по умолчанию расположен в каталоге приложения. Этот каталог может быть перемещен в любое удобное место.

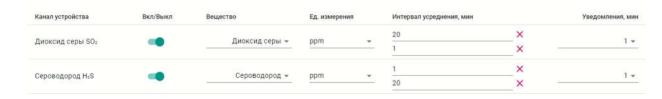
4.8.2. Настройка прибора

На вкладке «Измерительные приборы» нажмите кнопку «Добавить».

В поле «Описание» введите необходимую информацию о приборе, в поле «Настройки» при необходимости введите требующиеся настройки.

Некоторые приборы требуют ввода специальных настроек, которые описаны в документации к библиотеке прибора. Для приборов не требующих дополнительных настроек поле «Настройки» нужно оставить пустым.

4.8.3. Настройка соединения


В поле «Тип соединения» из выпадающего списка выберите способ подключения прибора и заполните настройки подключения:

- Serial соединение прибора осуществляется по интерфейсу RS232 либо RS485. В поле «Адрес» введите имя последовательного порта системы в формате, соответствующем операционной системе. Для Windows COMx, где х номер порта (например, COM8). Для Linux ttySx, где х номер порта (например, ttyS8). Имя порта может отличатся в разных дистрибутивах Linux. В поле «Скорость» введите значение скорости последовательного порта.
- UDP Connection соединение прибора осуществляется по локальной сети по протоколу UDP. В поле «Адрес» введите IP адрес устройства, в поле «Порт» введите номер TCP порта.

В поле «Описание соединение» при необходимости введите комментарий.

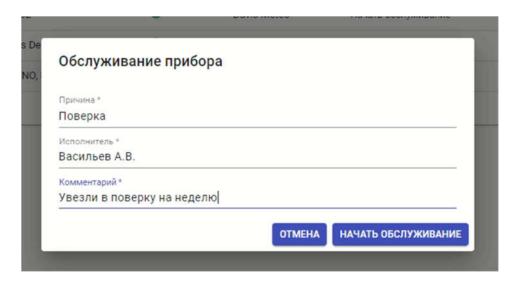
4.8.4. Настройка каналов

Нажмите на выпадающий список «Обработчик устройства» и в появившемся списке выберите библиотеку устройства, скопированную ранее в папку с библиотеками. Ниже отобразится список измерительных каналов прибора. В столбце «Канал устройства» отображается описание измерительного канала. В столбце «Вкл/Выкл» включите нужные измерительные каналы. В столбце «Вещество» для каждого измерительного каналы выберете измеряемое вещество или физическую величину, зарегистрированную в системе и соответствующую каналу.

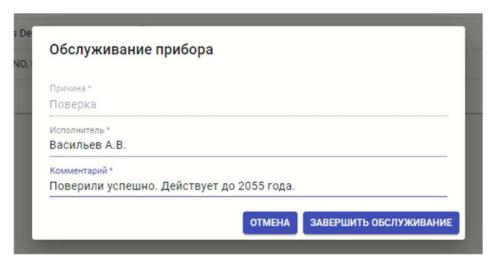
4.8.5. Настройка интервалов усреднения

При необходимости настройте интервалы для усреднения значений, которые будут отображаться в пользовательском интерфейсе. ПО позволяет настроить до 2-х интервалов. В столбце «Интервал усреднения, мин» нажмите иконку «+» напротив нужного канала и введите время усреднения

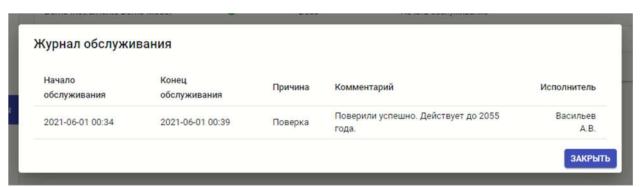
в минутах. Выбранные интервалы будут отображаться на плитках с измеряемым веществом или физической величиной.


4.8.6. Настройка оповещений

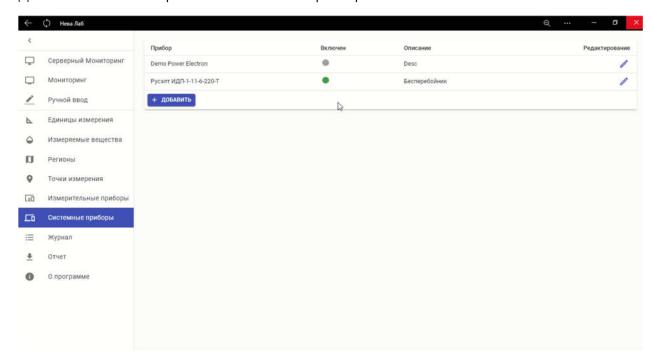
Для оповещения о выходе значений канала за допустимый диапазон необходимо настроить интервал в столбце «Уведомления, мин». Если для канала не настроены интервалы усреднения, то выпадающий список будет содержать только значение «Мгновенное». При выборе такого варианта, ПО будет мгновенно оповещать о выходе значения измеряемого канала за допустимый диапазон при обновлении данных с прибора. Если для канала настроены интервалы усреднения, то они будут отображены в выпадающем списке. При выборе одного из интервалов, ПО будет оповещать о выходе значения измеряемого канала за допустимый диапазон при получении усредненного значения. Выбранный вариант усреднения отмечается точкой на плитке измеряемого вещества.


После настройки прибора включите выключатель «Включен» в верхней части окна настроек прибора и нажмите кнопку «Сохранить». Выбранные и настроенные каналы прибора отобразятся на вкладке «Мониторинг».

4.8.7. Журнал обслуживания приборов.


Для ведения журнала обслуживания приборов необходимо перед процедурой обслуживания нажать кнопку «Начать обслуживание» напротив нужного прибора на вкладке «Измерительные приборы». Появится окно, в котором необходимо заполнить информацию об обслуживании. В поле «Причина» введите информацию о причине обслуживания. Это может быть плановое обслуживание, ремонт, поверка и т.д. В поле «Исполнитель» введите информацию о сотруднике, который будет выполнять обслуживание. При необходимости введите дополнительную информацию в поле «Комментарий». После заполнения полей нажмите кнопку «Начать обслуживание».

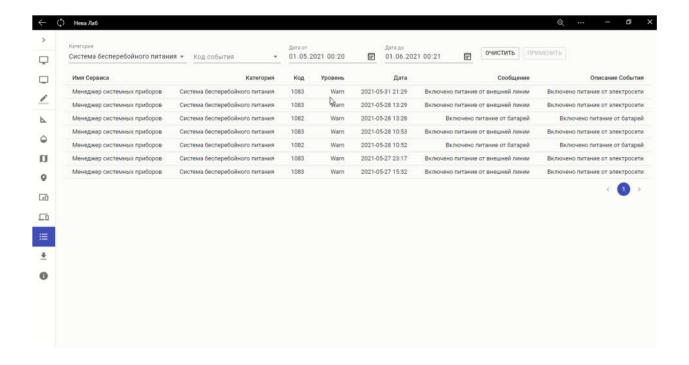
После завершения обслуживания нажмите кнопку «Завершить обслуживание» напротив нужного прибора на вкладке «Измерительные приборы». Появится окно «Обслуживание прибора». Если в процессе обслуживания сменился исполнитель, то отредактируйте поле «Исполнитель». При необходимости измените поле «Комментарий».



Для просмотра журнала обслуживания прибора, нажмите на кнопку в колонке «Журнал обслуживания» напротив нужного прибора на вкладке «Измерительные приборы».

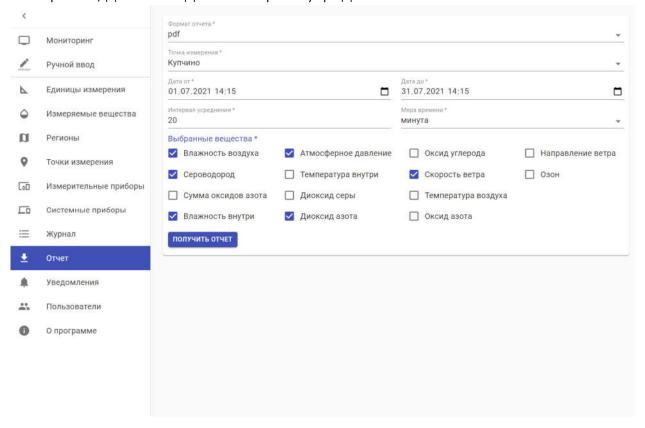
4.9. Системные приборы

Экологические посты могут быть оснащены вспомогательными системами, такими как: система бесперебойного питания, противопожарная и охранная системы. Вкладка «Системные приборы» предназначена для добавления и настройки системных приборов.

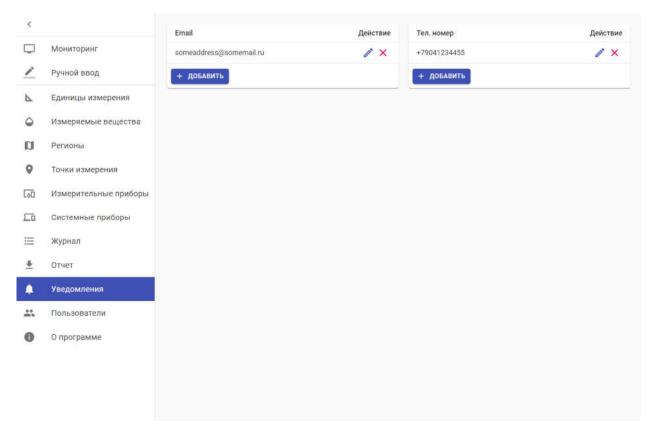


Для добавления системного прибора в систему необходима соответствующая прибору библиотека. Библиотека представляет собой файл с расширением dll. Файл необходимо положить в каталог с библиотеками системных приборов, который по умолчанию расположен в каталоге приложения. Этот каталог может быть перемещен в любое удобное место. Далее необходимо на вкладке «Системные приборы» нажать кнопку «Добавить».

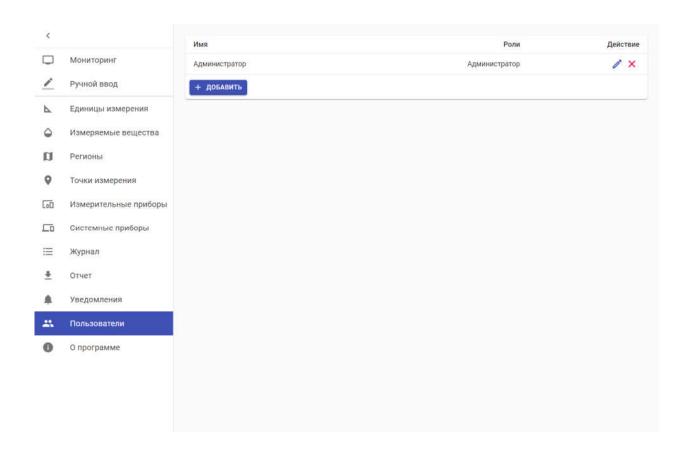
Пункты 4.8.2 и 4.8.3 аналогичны для системных приборов.


4.10. Журнал

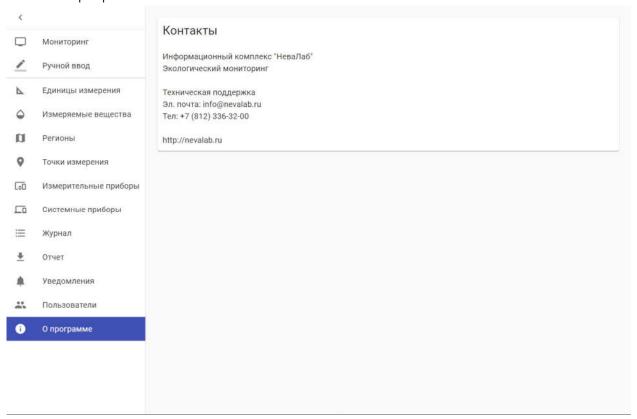
На вкладке «Журнал» отображаются события, происходящие в системе во время её работы. Выпадающий список позволяет выбрать категорию события. Поля «Дата от» и «Дата до» позволяют выбрать диапазон дат для отображения событий.


4.11. Отчет

Вкладка «Отчет» позволяет сформировать отчеты по измерениям. Для формирования отчетов необходимо выбрать формат вывода отчета, точку измерения, диапазон дат и интервал усреднения.


4.12. Уведомления

Вкладка «Уведомления предназначена для настройки адресов уведомлений». В поле «Еmail» введите адреса почтовых ящиков, в поле «Тел. номер» ведите номера телефонов для отправки уведомлений.



4.13. Пользователи

Вкладка «Пользователи» предназначена для управления учетными записями пользователей.

4.14. О программе

5. Подключаемые библиотеки приборов

5.1. Horiba AP серия

Библиотека HoribaAP370Series.dll включает несколько приборов.

АРМА370. Прибор измеряет концентрацию монооксида углерода.

Тип соединения: Serial, скорость 9600. Либо UDP Connection, порт 53700.

Измерительные каналы прибора:

• CO - монооксид углерода. Единица измерения «ppm», постоянна и не зависит от выбранной в интерфейсе прибора.

APNA370. Прибор измеряет концентрацию оксида азота, диоксида азота и сумму оксидов азота.

Тип соединения: Serial, скорость 9600. Либо UDP Connection, порт 53700.

Измерительные каналы прибора:

- NO оксид азота.
- NO₂ диоксид азота.
- NOx сумма оксидов азота.

Единицы измерения на всех каналах «ppm», постоянны и не зависят от выбранной в интерфейсе прибора.

АРОА370. Прибор измеряет концентрацию озона.

Тип соединения: Serial, скорость 9600. Либо UDP Connection, порт 53700.

Измерительные каналы прибора:

 О₃ - озон. Единица измерения «ppm», постоянна и не зависит от выбранной в интерфейсе прибора.

APSA370. Прибор измеряет концентрацию диоксида серы и сероводорода. Существует несколько вариантов этого прибора: прибор измеряет только диоксид серы, прибор измеряет только сероводород, прибор измеряет оба вещества. Модификация прибора, измеряющая оба вещества, выполняет измерение веществ по очереди. Время переключения

каналов настраивается в интерфейсе прибора. При добавлении библиотеки прибора включите канала, согласно модификации прибора.

Тип соединения: Serial, скорость 9600. Либо UDP Connection, порт 53700.

Измерительные каналы прибора:

- SO₂ диоксид азота.
- H_2S сероводород.

Единицы измерения на всех каналах «ppm», постоянны и не зависят от выбранной в интерфейсе прибора.

5.2. Davis

Библиотека DavisVantagePro2.dll предназначена для метеостанции фирмы Davis, модель Vantage Pro 2.

Тип соединения: Serial, скорость 19200.

Измерительные каналы прибора:

- Атмосферное давление. Единица измерения «дюйм ртутного столба».
- Температура внутри. Температура, измеренная в месте размещения консоли прибора. Единица измерения «градус Фаренгейта».
- Температура снаружи. Температура, измеренная в месте размещения выносной метеостанции. Единица измерения «градус Фаренгейта».
- Влажность внутри. Относительная влажность воздуха, измеренная в месте размещения консоли прибора. Единица измерения «%».
- Влажность снаружи. Относительная влажность воздуха, измеренная в месте размещения выносной метеостанции. Единица измерения «%».
- Скорость ветра. Единица измерения «миля в час». Направление ветра. Единица измерения «градус». Все единицы измерения постоянны и не зависят от выбранной в интерфейсе прибора.

5.3. GlobalSat

Библиотека GlobalSat.dll предназначена для GPS приемника GlobalSat BU-353S4. Выдает координаты в градусах. Широта представлена дробным числом в диапазоне от -90 до 90, долгота дробным числом в диапазоне от -180 до 180.

Тип соединения: Serial, скорость 4800.

5.4.RuseltPower

Библиотека RuseltPower.dll предназначена для работы с источником бесперебойного питания Русэлт ИДП-1-11-6-220-Т.

Тип соединения: Serial, скорость 2400.